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A SUN_ OF FLIGHT-DETERMINED TRANSONIC LI_T

AND DRAG CHARACTERISTICS OF SEVERAL

RESEARCH AIRPLANE CONFIGURATIONS

By Donald R. Bellman

SUMMARY

Flight-determined lift and drag data from transonic flights of

seven research airplane configurations of widely varying characteristics

are presented and compared with wind-tunnel and rocket-model data. The

airplanes are the X-5 (59 ° wing sweep), XF-92A, YF-102 with cambered

wing, YF-102 with symmetrical wing, D-558-II, X-5, and X-IE. The effects

of some of the basic configuration differences on the lift and drag

characteristics are demonstrated. As indicated by transonic similarity

laws, most of the configurations demonstrate a relationship between

the transonic increase in zero-lift drag and the maximum cross-sectional

area. No such relationship was found between the drag-rise Mach number

and its normally related parameters. A comparison of flight and wind-

tunnel data shows a generally reasonable agreement, but Reynolds number

differences can cause considerable variations in the drag levels of the

flight and wind-tunnel tests. Mm_ximum lift-drag ratios vary widely in

the subsonic region as would be expected from differences in aspect ratio

and wing thickness ratio; however, the variations diminish as the Mach

number is increased through the transonic region. The attainment of

maximum lift-drag ratio in level flight by several of the airplanes was

limited by engine performance, stability characteristics, and buffet
b oundar ie s.

INTRODUCTION

In most of the tests performed with research airplanes at the NASA

High-Speed Flight Station, Edwards, Calif., lift and drag characteristics

were obtained and subsequently reported in numerous papers. This paper

consolidates the previously reported data, presents data obtained since



the preparation of the original papers, and makesadditional comparisons
with model data. It should be noted that the airplanes considered in
this paper differ from one another in manyaspects and were designed at
different times and for different purposes. Consequently, the data can-
not be used as a meansof comparing single characteristics such as plan
form, wing sweep, or aspect ratio. The comparisons presented are intended
to show the general range of aerodynamic characteristics covered by these
configurations.

Transonic lift and drag data for the following airplanes are pre-
sented: X-5 (59° wing sweep), XF-92A, YF-102 with camberedwing, YF-102
with symmetrical wing, D-558-II, X-3, and X-1E. The data for these air-
planes were originally published in references 1 to 5. Additional unpub-
lished data have been used as noted.

SYMBOLS

A

AR

CD

c_R

CDo

CL

CLec

e

D

dC D IdCL 2

AC D

cross-sectional area, sq ft

aspect ratio

drag coefficient, D/qS

drag coefficient at the drag-risc_ Mach number

drag coefficient at zero llft

lift coefficient, L/qS

lift-curve slope, deg -I

chord

drag force, ib

drag-due-to-lift factor

transonic drag-coefficient increnent,

gravitational acceleration, ft/sec 2

(COmax)M>l - COOR

hp pressure altitude, ft
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L

Z

M

q

S

t/c

x

Subscript:

max

lift force, ib

fuselage length, ft

Much number

dynamic pressure, ib/sq ft

wing area, sq ft

maximum wing thickness ratio

distance along fuselage from nose, ft

angle of attack, deg

maximum

AIRPLANES AND TESTS

The seven research airplane configurations for which data are pre-

sented are single place and are capable of transonic or supersonic speeds.

Figure i shows a two-view sketch of each airplane drawn to approximately

the same scale. Figure 2 presents photographs of each airplane. Perti-

nent dimensions and details of the airplanes are listed in table I. The

weights and wing loadings for normal flight were determined by assuming

50-percent fuel remaining.

Although all the airplanes were designed before the area rule

was recognized as an important design tool, area differences in these

airplanes demonstrate some of the area-rule principles; the cross-

sectional-area distributions are shown, therefore, in figure 3. The

area distributions are presented on a nondimensional basis by dividing

the cross-sectional areas by the wing areas, instead of dividing by the

more commonly used fuselage length squared. The use of wing area for

nondimensionalizing makes the parameter more nearly comparable to air-

plane drag, inasmuch as drag coefficients are also based on unit wing

area. For the airplanes with internal ducts, approximately 85 percent

of the minimum duct area has been removed from the fuselage cross-

sectional area and is shown as a dotted line at the lower part of each

diagram.

Additional features of the airplanes and the test conditions under

which the data were obtained are described in the following subsections.
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X-5 Airplane

The Bell X-5 research airplane is constructed so that the wing-
sweepangle can be varied in flight from 20° to 59° . Of the configura-
tions tested only the 59° configuration has sonic speed capabilities;
therefore, only this configuration is presented. The airplane is powered
by a J35-A-17 turbojet engine and is capable of a Machnumberof 0.94 in
level flight or about 1.07 in a dive. Lift and drag data for this air-
plane were presented originally in reference l; however, the data used
herein are from flights subsequent to those of reference 1. In the
flights of reference 1 the thrust was estimated from altitude-wind-tunnel
data of the engine, whereas in the later flights the thrust was measured
with duct and tailpipe probes. Significant differences in the data were
observed only at the lower Machnumbers. The bulk of the data was
obtained at altitudes between 38,000 feet and 43,000 feet; a small
amount of the data was obtained at altitudes downto 25,000 feet. The
Reynol_Is numbersbased on the meanaerodynamic chord varied from
l0 x 106 to 26 × l06.

XF-92AAirplane

The Convair XF-92Aairplane has a 60° delta wing and no horizontal
tail. It is powered by a J33-A-29 turbojet engine-afterburner combina-
tion and has approximately the samespeed capabilities as the X-5 air-
plane. Somellft and drag data for the XF-92Aairplane are presented in
reference 2. The data used in this paper were obtained primarily from
later flights in which muchgreater lift ranges were covered. The
general level of drag of the later flights is slightly, but measurably,
higher than the previously reported flights. It is believed that this
higher level of drag is the result of certain fuselage modifications
including the addition of engine-cooling alrscoops. The Reynolds num-
bers based on the meanaerodynamic chord varied from 40 X l06 to
55 x lO6.

YF-I02, Cambered Wing, and YF-I02,

Symmetrical Wing, Airplanes

The Convair YF-102 airplane, similar to the XF-92A airplane, has a
60 ° delta wing and no horizontal tail. It differs from the XF-92A air-

plane in three significant ways: it has a 4-percent-thick wing rather

than a 6.5-percent-thick wing, it has side inlets instead of a nose

inlet, and the trailing edge of the wing is swept forward 5° . The air-

plane was originally equipped with a symmetrical sectional wing having



a single pair of fences. After tests were completed with this configura-
tion, a camberedleading edge was installed on the wing. Concurrently,
a second pair of fences was added inboard of the other fences, and the
wing tips outboard of the elevon were reflexed i0 ° up at the trailing
edge. The modifications caused considerable variation in the lift and
drag characteristics_ therefore, data from reference 3, for both con-
figurations are presented. The Reynolds numbersbased on the meanaero-
dynamic chord varied from 23 x 106 to 77 × 106.

D-558-II Airplane

Two versions of the Douglas D-558-II research airplane were investi-

gated; one powered by both a J34-WE-40 turbojet engine and an LR8-RM-6

rocket engine; the other powered only by an LR8-RM-6 rocket engine. The

wing and tail surfaces on the two versions were identical and, except

for ducts, the fuselages were essentially the same. Since no signifi-

cant difference in the drag data for the two versions was observed, data

from both configurations are included. Some of the data from the all-

rocket airplane were obtained from reference 4; the remainder is unpub-

lished data from both airplanes. The all-rocket airplane is capable of

Mach numbers up to 2.0 and altitudes in excess of 80,000 feet. The

turbojet and rocket version is limited to speeds only slightly greater

than sonic speed and altitudes of about 40,000 feet. Data at Mach num-

bers of 0.90 and 0.96 were obtained with the rocket- and turbojet-

powered airplane with Reynolds numbers based on the mean aerodynamic

chord varying from 15 X 10 6 to 19 x 10 6 • The remainder of the data was

obtained with the all-rocket airplane at Reynolds numbers varying from

12 X lO 6 to 17 x 10 6 •

X-3 Airplane

The Douglas X-3 research airplane has a straight wing of low aspect

ratio with a sharp leading edge. The wing loading can be as high as

132 pounds per square foot on take-off. The airplane is powered by two

J34-WE-17 turbojet-afterburner combinations and is capable of a Mach

number of about 1.2 in a dive. The data presented were taken from ref-

erence 5- Reynolds numbers based on the mean aerodynamic chord varied

from 13 x 106 to 37 x 106 •

X-iEAirplane

The X-LE airplane is an NASA revision of the Bell X-l, no. 2, air-

plane, one of the original pair of X-I airplanes. The early airplanes
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had heavy-walled propellant tanks, and high-_)ressure gas was used to

transfer the propellants to the engine. In _he revisions that created

the X-IE the propellant tanks were replaced with lightweight versions,

and the propellants fed to the engine by me_us of a hydrogen-peroxide-

driven pump. The change greatly increased the fuel capacity. In addi-

tion, a new wing was installed, reducing the thickness ratio from lO per-

cent to about 4 percent and the aspect ratio from 6 to 4. The original

8-percent-thlck horizontal tail was retained. The fuselage nose was

altered to incorporate an ejection seat and a raised top-openlng canopy

to provide a means of escape and better vision.

The X-1E version not only had increased fuel capacity, but also had

greatly decreased drag in the transonic and supersonic regions as a

result of the decrease in wing thickness. Consequently, the maximum

Mach number of the airplane was increased from about 1.5 to greater

than 2.2. The drag of the early versions of the airplane was presented

in references 6 and 7. Reynolds numbers based on mean aerodynamic chord

for the X-1E flights varied from 5 X lO 6 to L5 x lO 6.

ACCURACY

Lift

The accuracy of the flight lift coefficients is dependent primarily

on the accuracy of the normal-acceleration measurement, which was O.05g

for each of the airplanes. The error in lif_ coefficient would then be

a function of wing loading and dynamic press_ire. The accuracy increases

as the dynamic pressure becomes higher and t!le wing loading becomes

lower. At an altitude of about 35,000 feet _nd at a Mach number of 0.90,

the error in lift coefficient would be 0.005 for the XF-92A airplane and

0.019 for the X-5 airplane. The accuracy of lift coefficient of model

data used later in this paper for comparatiw_ purposes varies from 0.003

for the Ames 6- by 6-foot supersonic tunnel _nd 0.001 for the Langley

8-foot transonic tunnel to 0.05 for rocket mLxlels at low speeds.

Drag

The accuracy of flight drag coefficient3 is almost equally dependent

on three, and sometimes four, quantities: airplane weight, angle of

attack, longitudinal acceleration, and thrus_. A detailed discussion

of errors in these quantities is presented in reference 8. Some of the

special conditions arising in the tests covered by this paper are given

in the following sections.
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Airplane weight.- Measurement of airplane weight is of particular

significance only for rocket airplanes, since their enormous fuel con-

sumptionmakes the weight accurate to only i percent as compared to

turbojet-powered airplanes for which weight generally is known to less

than one-half of i percent.

An_le of attack.- Error in angle of attack can be appreciable, but

it affects drag coefficients only in proportion to the lift and, there-

fore, has no effect on the zero-lift drag. The principal sources of

error in angle-of-attack measurements are instrument error, airplane

pitching effects, boom bending due to both airloads and acceleration

loads, vane floating arising from slight asymmetry, and upwash due to

the wing, fuselage, and airspeed boom.

Most of the airplanes had turnmeters, making it possible to correct

for pitching velocities. Such corrections were made where necessary for

a small part of the data from the XF-92A and X-3 airplanes and were made

routinely for the YF-I02 and X-IE airplanes.

Boom bending due to normal acceleration was considered on all air-

planes except the X-IE which had a short stiff boom. The correction

varied from 0.09 ° per g for the relatively stiff boom of the D-558-II

airplane to 0.16 ° per g for the XF-92A airplane.

Upwash affects the angle-of-attack measurements to only a minor

extent on most of the airplanes, therefore upwash corrections were not

made. Corrections were considered, however, for the X-IE airplane where

the vane blade was 29 inches ahead of the fuselage and 202.5 inches ahead

of the quarter chord of the wing. In comparison, the angle-of-attack-

vane blade of the X-3 airplane was more than 500 inches ahead of the

wing quarter chord.

Longitudinal acceleration.- Longitudinal accelerations were orig-

inally measured with the standard NASA three-component accelerometer

with an accuracy of about O.02g. The instruments were air-damped, and

the accuracy deteriorated somewhat at the higher altitudes. Such instru-

ments were used on the XF-92A (tests reported in ref. 2) and X-3 air-

planes. An NASA magnetically damped instrument having an accuracy of

O.Olg was used on the X-IE, XF-92A (tests reported herein), D-558-II,
X-5, and YF-I02 airplanes. The accelerometer must be alined with the

axis of the airplane within 0.i ° to prevent a significant carryover

from the normal acceleration. It is doubtful that such care in mounting
was given the earlier installations.

Thrust.- Thrust must be measured within i00 pounds to prevent

excessive error in drag. This accuracy is easily attained on the rocket

engines of the D-558-II and the X-IE airplanes, but a rather elaborate

system of rakes is required to achieve the same accuracy on Jet engines.
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The estimated thrust accuracy of the XF-9P_ airplane was 200 pounds,

primarily because of difficulties in meam_rlng the air flow in a

centrlfugal-type Jet engine.

Mach Number

The airplanes had well-callbrated airspeed heads which, for the

Mach number range covered by this paper, resulted in Mach numbers accu-
rate to within O.O1.

RESULTS AND DISCUSSION

Lift

The variations of lift coefficient w_ith angle of attack for the

seven airplane configurations are presented in figure 4 for representa-

tive Mach numbers in the transonic region. Also shown in figure 4 are

comparable wlnd-tunnel data taken from references 9 to 14 and from

unpublished sources. With the exception of the XF-92A airplane, the

flight data are for trim conditions, whereas the wlnd-tunnel data

except for the X-5 and YF-102 airplanes are for zero elevator and sta-

bilizer deflections. In general, the stabilizer and elevator have

only a minor effect on the lift curves, therefore such comparisons are

valid. For the tailless XF-92A and YF-102 airplanes, however, the

elevon position has a large effect on the llft, as indicated by ref-
erence 2 which shows that trim elevon def_i.ection causes a 20- to

25-percent decrease in lift-curve slope over the Mach number range from

0.6 to 0.95. Since tunnel data for the XF-92A airplane were available

only for zero elevon deflection, the flight data were corrected to zero

elevon deflection using wind-tunnel data from reference lO as a basis.

Since no model tested in reference lO was an exact model of the XF-92A,

the flight data are compared with the open-nose-entry model which had

the proper wing and vertical tail but a _selage 34 percent larger in

diameter, scalewise, than the actual airplane. The wind-tunnel data

for both YF-I02 airplane configurations s_'e unpublished data from the

NASA-Langley 8-foot transonic wind tunnel These data were available

for various elevon positions and were selected to correspond to flight

trim conditions. The wind-tunnel data for the X-5 and X-IE airplanes

were also selected to correspond to flight trim conditions. For the

X-3 airplane both the tunnel data and flight data were limited so that

comparable lift and drag curves were available only at a Mach number

of 0.90. Therefore, a comparison was also made with rocket-model tests

at four Mach numbers in the transonic region.
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In general, the flight lift data compare well with the tunnel data,

usually falling within the stated accuracies of the measurements. The

slopes of the llft curves for the seven airplane configurations at lift

coefficients of approximately 0.3 are shown in figure 5- All data are

for flight trim conditions. The exact shape and level of the curve

depend on numerous factors such as aspect ratio, wing thickness, wing

sweep, and airfoil section. None of these configurations demonstrates

the transonic dips in the variation of the lift-curve slope with Mach

number which was characteristic of the original X-1 airplanes (see

refs. 6 and 7). Reference 15 demonstrates that the occurrence of such

dips, or "buckets," is a function of wing-thickness ratio and aspect

ratio. Figure 4 of reference 15 shows approximate boundaries, indicating

that the original X-1 airplanes should experience these dips, that the

X-1E, X-5, XF-92A, YF-102, and X- 5 airplanes should not, and that the

D-558-II airplane is on the borderline. The flight tests substantiate

these predictions. The X-5, XF-92A, and YF-102 airplanes have lift-

curve slopes that are distinctly lower and vary less with Mach number

than those of the other three airplanes. This condition probably occurs

because the X-5, XF-92A, and YF-102 airplanes have not only the lowest

aspect ratios, but also the greatest amount of wing sweep.

Drag

The variation of drag coefficient with lift coefficient at various

constant Mach numbers is shown in figure 6 for the seven airplane con-

figurations, together with a comparison with wind-tunnel data. No com-

parison is made for the XF-92A, because of the magnitude of the cor-

rections for variations in elevon positions and because of the lack of

suitable data on which to base such a correction. In figure 6 all

flight data are for flight trim conditions; wind-tunnel data for the

X-5, YF-102, and X-IE airplanes are also for flight trim conditions.

The wind-tunnel data for the D-558-II and X-5 airplanes are for hori-

zontal stabilizer and elevator settings of zero. The X-3 rocket-model

data were taken at fixed horizontal stabilizer deflections of -1.25 °

for Mach numbers of 0.89 and 1.04 and -2.80 ° for Mach numbers of 0.97

and 1.14. On the whole, fair agreement is shown between the flight and

model data. It should be noted that.poorer agreement would be expected

for the Mach numbers in the drag-rise region where slight changes in

Mach number can result in appreciable differences in drag coefficient.

Presumably, this condition is applicable to the X-5 airplane where

flight data at a Mach number of 0.97 are compared with wind-tunnel data

at a Mach number of 0.96.

A further comparison of the flight and wind-tunnel drag data is

made in figure 7 in which the variation of drag coefficient with Mach

number for constant low values of llft coefficient is shown. In the

drag-rise Mach number region considerable discrepancy exists between
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the flight and model data for someof the configurations. It is believed
that these discrepancies are not necessarily a reflection on the accuracy
of the data, but in manycases maybe attributed to factors such as model
differences, internal-flow differences, base pressure effects, and
Reynolds numbereffects. For example, both the X-5 and X-3 airplane
models had enlarged fuselage bases to allow for the sting mounting. Ref-
erence 3 showshow Reynolds numbervariation between flight and model
tests of the YF-102 airplane could cause differences of 0.003 in drag
coefficient which amount to 20 or 50 percent of the low-lift subsonic

drag coefficients. The only model data available for comparison with

the X-LE data were from a 1/62-scale model tested at high supersonic Mach

numbers. Reynolds numbers for the model tests were less than one-tenth

those for the full-scale flight tests. The effect of such Reynolds num-

ber differences was calculated from the basic data of reference 16 which

were converted to high Mach numbers by using data of reference 17. The

calculations showed that the model tests would have skin-friction drag

coefficients at least 0.0090 higher than the flight tests, which is about

the amount of the differences in the data shown in figures 6(g) and 7(g).

The calculations assumed fully turbulent flow for both the flight and

the model tests; the assumption is Justified for the model despite the

low Reynolds numbers because transition strips were used.

Because of the widely varying characteristics of the seven airplane

configurations, it is interesting to comp_e their transonic drag charac-

teristics in the light of various paramet_rs. In figure 8 the airplanes

are compared on the basis of increase in drag coefficient above the drag-

rise Mach number which is arbitrarily defined as the Mach number where

the rate of change of drag coefficient with Mach number (dCD/dM) first

becomes O.1. Transonic similarity rules _;how that the transonic drag-

coefficient incren_ent for a wing alone wl].l vary with (t/c) 5/3
l

(ref. 18). The similarity between the qu_ntities t/c and A/S would

indicate a similar relationship between tl_ transonic drag-coefficient

increment and (A/S)5/3. In figure 9 the transonic drag-coefficient

increment is plotted against the quantity (A/S) 5/3, and it can be seen

that, with the exception of the X-3 airpl_ne, the data presented closely

approximate a straight line.

The drag-rise Mach number is a measu_'e of the Mach number at which

appreciable portions of the air flow adJa_:ent to the airplane reach

sonic velocity. Reference 19 indicates tlLat for wings, the drag-rise

Mach number is primarily a function of wiILg thickness ratio and wing

sweep angle. For complete airplanes, it 1_doubtedly is also a function

of cross-sectional-area distribution. Comparing the subject airplane

configuration on the basis of these three parameters shows poor
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correlatlon_ and it is probable that the airplanes are sufficiently dif-
ferent that no one factor is dominant in determining the drag-rlse Mach
number in all cases.

The effect of lift on drag is shownin figure i0 where the square
of the lift coefficient is plotted against the drag coefficient for the
subsonic, transonic, and supersonic speed ranges. Drag data at a constant
Machnumberwhenplotted in this mannerapproximate a straight llne and
the slope termed drag-due-to-lift factor can be used as a measure of the
drag at lifting conditions. For someof the airplanes the approximation
of a straight line is relatively poor in the transonic region. In the
supersonic region the approximation is good for most of the airplanes;
only the D-558-II airplane showsappreciable curvature.

The drag-due-to-lift factors were determined for the airplanes over
the Machnumberrange at a lift coefficient of about 0.3. The results
are presented in figure ll. It should be noted that the drag-due-to-lift
factors are the actual slopes of the curves of figure lO at a lift coeffi-

cient of 0.3; hence, the drag equation CD= CDo+ _2 CL2 will apply
d%

only in those cases where CD plotted against CL2 is a straight line

between a lift coefficient of 0 and 0.3. Aerodynamic theory shows that

for subsonic conditions the drag-due-to-llft factor will equal 1/CL_

if there is no leading-edge suction and will approximate 1/_AR if the

leadlng-edge suction is fully developed. A comparison of the subsonic

data of figure ll with comparable data of figure 5 shows that none of

the seven airplane configurations closely approaches fully developed

leading-edge-suction conditions. As would be expected, the airplane

with the greatest wing-thickness ratio, the D-558-II airplane, shows the

greatest amount of leading-edge suction. Reference 20 indicates that

low-aspect-ratio thin wings lose a considerable portion of their leading-

edge suction. The X-3 airplane, for example, would not have any signifi-

cant amount of leading-edge suction because of the sharp leading edge of

its wing. The drag-due-to-lift factors of the XF-92A airplane are

increased further over what would be expected of this wing type because

trim data are used which include a simultaneous increase in elevon deflec-

tion with an increase in lift. Since an increase in elevon deflection

causes a loss in lift, a considerably greater angle of attack is required

to create a given lift under trim conditions than with zero elevon deflec-

tion. Figure 12 shows a comparison of drag-due-to-lift factors for the

X-3 and D-558-II airplanes with the 1/_AR and 1/CL_ values for these

airplanes. The D-558-II curve deviates considerably from the zero suc-

tion curve ljCL_ toward the full suction curve 1/_AR at the lower Mach
i

numbers, indicating a considerable amount of leading-edge suction at these
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Machnumbers. The drag-due-to-lift factor for the X-3 airplane is even
higher than would be indicatedby the expected complete lack of leading-
edge suction. This condition is possibly the result of fuselage effects
such as base drag which can vary considerably _ith lift. The X-3 air-
plane has a large amount of fuselage area in c_mparison to its wing area.

Lift-Drag Ratio

The best measureof the overall efficiency of an airplane at any
given Machnumber is the lift-drag ratio, which for level flight is the
reciprocal of the drag force per unit airplane weight. The maximumlift-
drag ratios of the seven airplane configurations are plotted against Mach
number in figure 13. In the subsonic region, as might be expected from
the wide variation in aspect ratios of the airplanes, there is a wide
variation in maximumlift-drag ratio which greatly diminishes as the Mach
number is increased through the transonic region.

In discussing maximumlift-drag ratios, the ability of the airplane
to fly at the required conditions must be considered, since buffeting,
control, and engine-operation limitations mayprevent such operation.
Figure 14 presents the lift coefficients at wh_.chthe maximumlift-drag
ratios of figure 13 are obtained. Figure 15 showsthe altitude required
for the airplanes to fly in level flight at these specified lift coeffi-
cients. The data of figure 15 were calculated by using the normal flight
wing loadings given in table I. The X-5, X-3, and XF-92Aairplanes are
limited by their engine capabilities to altitudes below 45,000 feet; the
YF-102 airplane cannot exceed 55,000 feet. Th_refore, it is evident that
these airplanes will be able to attain their maximumlift-drag ratios in
level flight only in the subsonic and low tran_onic region. Also, the
D-558-II airplane is restricted by the instability and buffet boundaries.
Reference 21 shows that this airplane, whenat a lift coefficient for
maximumlift-drag ratio, will encounter heavy buffeting at a Machnumber
of 0.90 and longitudinal instability at a Machnumber of 0.92.

CONCLUDINGREMARKS

Flight data from seven widely varying research airplane configura-
tions are compiled and comparedwith applicabl_ wind-tunnel and rocket-
model data. A comparison of the flight and wii_-tunnel data shows that,
generally, reasonable agreement exists, but Re_nolds numberdifferences
can cause considerable variations in the results.

In accordance with theoretical predictions, none of the seven con-
figurations shows the transonic dips in the variation of lift-curve
slope with Machnumberwhich are characteristic of wings of higher
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aspect and thickness ratios, such as the original X-I airplanes. As

might be expected from transonic similarity laws, all the configurations

except the X-3 indicate a linear relationship between the transonic

increase in zero-llft drag and the five-thlrds power of the maximum

ratio of cross-sectional area to wing area. The drag-rise Mach number

does not appear to be dependent on any one factor such as wlng-thickness

ratio, aspect ratio, wing-sweep angle, and maximum cross-sectlonal area.

Maximum lift-drag ratios vary widely in the subsonic region as would

be expected from the differences in aspect ratio and wing-thickness ratio;

however, the variations diminish as the Mach number is increased through

the transonic region. The attainment of maximum lift-drag ratio in level

flight by several of the airplanes is limited by altitude, stability, and
buffet boundaries.

High-Speed Flight Station,

National Aeronautics and Space Administration,

Edwards, Calif., December lO, 1958.
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(a) X-5 airplane. E-813

Figure 2.- Photographs of the airplanes.
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(e) X-3 airplane.

Figure 2.- Continued.

E-1228
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